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Defining and measuring the systemic importance
(SI) of financial institutions (FIs): ∆CoVaR .

SI of financial institutions depends on ”their potential to have a large negative
impact on the financial system and the real economy.” (IMF/BIS/FSB, 2009)

⋄ Co-risk measures have attracted considerable attention in both
academic and policy research.

⋄ Adrian and Brunnermeier (2009,2010): compare VaR of the financial
system conditional on FI in distress (CoVaR) to VaR of the financial
system in normal times < 2009 > or the CoVaR of the financial system in
normal times < 2010 > (both versions extensively applied).

⋄ However, statistical testing procedures to assess the significance of the
findings and interpretations based on this co-risk measure ”have not yet
been developed”.

⋄ Emerging literature, Chuang, Kuan and Lin (2009), Billio, Getmansky,
Lo and Pelizzon (2010), White, Kim, and Manganelli(2010).

2 / 23



Quantile-based Risk Measures.

⋄ VaRX (τ) := inf {x ∈ R : FX (x) ≥ τ} ., τ ∈ (0, 1).

⋄ ESX (τ) (Expected Shortfall).

Add CoVaR
X index|i(τX )(τ) to this family of measures. Where X index returns on

index of financial institutions (representing the system)and X i stock return of
the financial institution i (possibly the root of distress).

P(X index ≤ CoVaR
X index|i(τX )(τ) | X i = VaRX i (τX )) = τ,

∆CoVaR index|i (τ) = CoVaRX index|i (τ)− VaRX index (τ).

Then ∆CoVaR index|i (τ) is the marginal risk contribution (incremental VaR) of

institution i ; determines the SI.
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CoVaR estimation.

Linear Location/Scale Model

X index
t = Ktδ + (γKt)εt ,

Quantile (response) Function Representation

QX index |K (τ) = Ktδ + (γKt)Qε(τ)

= Ktβ(τ)

where β(τ) = δ + γQε(τ).
Most applications of Adrian and Brunnermeier’s methodology (Linear
location-shift model, γKt = 1).

X index
t = Ktδ + εt ,

where Kt = [Zt ,X
i
t ].

Might be extremely restrictive model(s), more on that at the end!
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Measuring the SI of FIs: application of ∆CoVaR

⋄ Data: daily stock returns (1986-2010) for individual FIs and index of
FIs.

⋄ CoVaR: conditional quantile function (CQF) (also: quantile response
function).

Table: Size and ∆CoVaR of three European banks

Bank Assets (millions) Quantile Regression Results ∆CoVaR

A 1, 571, 768 X index|A(0.99) = 0.026 + 0.526XA(0.99) 1.38

B 102, 185 X index|B(0.99) = 0.042 + 0.231XB(0.99) 1.18

C 10, 047 X index|C (0.99) = 0.037 + 0.028XC (0.99) 0.03
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Our contribution: Testing for the SI of FIs.

⋄ Conclusion: A is more SI than B and C, and B is more SI than C?

⋄ Testing for the strength of the results.

Significance

H0 : ∆CoVaR index|i (τ) = 0,

test whether CQF differs from un-CQF for FI i
Dominance

H0 : CoVaRX index|i (τ) > CoVaRX index|j (τ),

test whether CQF conditional on FI i differs from CQF
conditional on FI j
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Quantile treatment effects and ∆CoVaR .

Two-sample treatment effects

⋄ Treatment group (CQF), with distribution G .

⋄ Control group (un-CQF), with distribution F .

(Non-parametric) estimator of quantile treatment effects

ϱ̂(τ) = Ĝ−1
T (τ)− F̂−1

S (τ),

∆CoVaR as a quantile treatment effect:

̂∆CoVaR
index|i

(τ) = Q̂X index |X i (τ)− Q̂X index (τ)

= F̂−1
X index |X i (τ)− F̂−1

X index (τ),
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Graphical depiction of ∆CoVaR
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Inference for Quantile Regression.

H0 in both significance and dominance test involves CQF. Since CQF is linear,
both tests fit in: general linear hypothesis framework:

H0 : Rβ(τ) = r(τ), τ ∈ T

where β(τ) is p dimensional and q is the rank of matrix R, (q ≤ p).
Wald (process, indexed by τ) statistic under the null, is:

WT (τ) = T
(Rβ̂(τ)− r(τ))′(RΩ̂(τ)R ′)−1(Rβ̂(τ)− r(τ))

(τ(1− τ))

where Ω̂(τ) is a consistent estimator of Ω(τ).
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Inference for Quantile Regression.

The Kolmogorov-Smirnov (KS) type statistic:

KT = sup
τ∈T

|| ŴT (τ) || .

K ′
T = sup

τ∈[τ0,τ1]

ŴT (τ)− ŴT (τ0)√
τ1 − τ0

.

Test statistic is distribution free. Critical values: DeLong (1981) and Andrews

(1993, 2003) by simulation methods, and more recently by exact methods by

Estrella (2003) and Anatolyev and Kosenok (2011).
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Simple Test of Significance for ∆CoVaR .

QX index |X i (τ) = β0(τ) + X iβ1(τ),

Theorem
Testing the hypothesis H0 := β1(τ) = 0 is equivalent to testing the hypothesis
H0 := ∆CoVaRX index|i (τ) = 0, for a given τ .

For such simple (two-sided) test H0 := β1(τ) = 0 we use Wald statistic WT (τ).

Define R as a selection matrix R = [0 : 1] and the restriction r(τ) = 0.
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Test of significance and dominance using quantile
response function.

Theorem
From Theorem 4.1 and let us define some continuous mapping
g(β(τ)) = Xβ(τ), where this mapping defines the quantile response function,
evaluated at some point in the design space.

√
n(Q̂Y|X(τ)− QY|X(τ)) →d N(0, τ(1− τ)XΩ(τ)X′)
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Test of significance and dominance using quantile
response function.

Two different (at least one column is different) design matrices X and Z (two
different continuous treatment effects applied to the same population Y . The
respective empirical quantile response functions are a follows:

Q̂Y|X(τ) = Xβ̂x
T (τ)

and
Q̂Y|Z(τ) = Zβ̂z

T (τ)
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Test of significance and dominance using quantile
response function.

Without loss of generality, we consider equal amount of observations T
through out the design space. Therefore, we have the following parametric
empirical process:

WT (τ) =
√
T (Q̂Y|X(τ)− Q̂Y|Z(τ))

=
√
T (X̃β̂x

T (τ)− Z̃β̂z
T (τ))

Where X̃ and Z̃ implies the quantile response function is evaluated at any point

of the design space (centroid (X̄, Z̄) or an extreme quantile of interest).
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Recall hypothesis test and statistic

Significance: Two-sided.

H0 : ∆CoVaR index|i (τ) = 0,

Dominance: One-sided.

H0 : CoVaRX index|i (τ) > CoVaRX index|j (τ),
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Recall hypothesis test and statistic

Statistic

WT (τ) = T
(Rβ̂(τ)− r(τ))′(RΩ̂(τ)R ′)−1(Rβ̂(τ)− r(τ))

(τ(1− τ))

Hypothesis Significance Dominance

R [X̃i ,−1] [X̃,−Z̃]

β̂(τ) [β̂i (τ),QX index (τ)] [β̂i (τ), β̂j(τ)]
r 0 0
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Testing for the SI of FIs: significance

Table: Testing for Significance (p-values)

FI ∆CoVaR H0 : β(0.99) = 0 H0 : ∆CoVaR(0.99) = 0

A 1.38 0.000 0.000
B 1.18 0.039 0.000
C 0.03 0.782 0.424
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Testing for the SI of FI A: significance
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Testing for the SI of FI C: significance
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Testing for the SI of FIs: dominance

Table: Testing for Dominance (p-values)

FI ∆CoVaR [τ0, τ1] = [0.90, 0.99] [τ0, τ1] = [0.10, 0.99]

AB 1.38 0.000 0.913
AC 1.18 0.000 0.874
BC 0.03 0.000 0.482
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Testing for the SI of FI A and B: dominance
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Testing for the SI of FI A and C: dominance
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Concluding remarks

⋄ ∆CoVaR is interesting tool for measuring SI, but statistical testing is
required before interpreting results.

⋄ We develop such tests in linear quantile regression framework. This
linear framework (location-shift model and location/scale model) is
restrictive.

⋄ work in progress.

⋄ Power of the test.
⋄ At some point when τ → 1, the convergence of the statistic
breaks down, Chernozhukov (2000).
⋄ Test for stochastic dominance at the extremum for a general
class of (models) conditional and unconditional quantile
functions.
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